ˆA=12A^=12 sđ BCBC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ BCBC⏜ =2ˆA=2.320=640=2A^=2.320=640
BC = BE (gt)
⇒⇒ sđ BCBC⏜ = sđ BEBE⏜ = 640
ˆB=12B^=12 sđ ACAC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ ACAC⏜ =2ˆB=2.840=1680=2B^=2.840=1680
AC = CF (gt)
⇒⇒ sđ CFCF⏜ = sđ ACAC⏜ = 1680
sđ ACAC⏜ + sđ AFAF⏜ + sđ CFCF⏜ = 3600
⇒⇒ sđ AFAF⏜ =3600–=3600– sđ ACAC⏜ – sđ CFCF⏜ = 3600 – 1680. 2 = 240
Trong ∆ABC ta có: ˆA+ˆB+ˆC=1800A^+B^+C^=1800