TV

Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A đó là tam giác ABD và tam giác ACE có AB = AD và AC = AE Kẻ AH vuông góc BC Gọi I là giao điểm HA và DE . Chứng minh DI = IE

AH
8 tháng 1 2017 lúc 16:36

Chưa phân loại

Từ $I$ kẻ \(IM\perp DA, IN\perp AE\)

Ta có: \(\left\{\begin{matrix} \widehat{IAM}-90^0-\widehat{BAH}=\widehat{ABH}\\ \widehat{AMI}=\widehat{AHB}=90^0\end{matrix}\right.\Rightarrow \triangle IAM\sim \triangle ABH\)

\(\Rightarrow\frac{IM}{AH}=\frac{IA}{AB}\) $(1)$. Tương tự : \(\Rightarrow \triangle IAN\sim \triangle ACH\Rightarrow \frac{IN}{AH}=\frac{IA}{AC}(2)\)

Từ \((1)(2)\Rightarrow \frac{IM}{IN}=\frac{AC}{AB}=\frac{AE}{AD}\).

Do đó, \(\frac{S_{DIA}}{S_{EIA}}=\frac{IM.AD}{IN.AE}=1\Rightarrow S_{DIA}=S_{EIA}\Rightarrow ID=IE\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
CB
Xem chi tiết
CB
Xem chi tiết
KF
Xem chi tiết
CB
Xem chi tiết
NA
Xem chi tiết
KF
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết