a, HS tự chứng minh
b, HS tự chứng minh
c, Chứng minh được: B A M ^ = M B C ^
Từ đó chứng minh được:
∆MAB:∆MBD => M B 2 = M A . M D
a, HS tự chứng minh
b, HS tự chứng minh
c, Chứng minh được: B A M ^ = M B C ^
Từ đó chứng minh được:
∆MAB:∆MBD => M B 2 = M A . M D
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P
a) Giả sử (BCA) ̂=〖30〗^0. Tính số đo cung nhỏ và cung lớn AB, số đo (PAB) ̂ , số đo (AOB) ̂
b) Chứng minh
c) Tia phân giác trong góc A cắt BC và (O) lần lượt tại D và M. Chứng minh:
MB
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt (O) tại M, tiếp tuyến tại M của (O) cắt AB và AC tại D và E. Chứng minh:
a. BC//DE;
b. Tam giác AMC đồng dạng tam giác ADB;
c. AB.CE+CA.DB=2(MB)2.
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P a) Giả sử (BCA) ̂=〖30〗^0. Tính số đo cung nhỏ và cung lớn AB, số đo (PAB) ̂ , số đo (AOB) ̂ b) Chứng minh c) Tia phân giác trong góc A cắt BC và (O) lần lượt tại D và M. Chứng minh: MB
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME
Các bạn giúp mình câu d với :)
Cho tam giác nhọn ABC nội tiếp (O). Đường kính AE của (O) cắt BC tại D.
a) Chứng minh : AD.DE=CD.DB
b) Ba đường cao tam giác ABC AF, BH, CK cắt nhau tại S. Chứng minh các tứ giác AHSK và BKHC
c) Chứng minh S là tâm đường tròn nội tiếp tam giác KFH
d) Tiếp tuyến tại E của (O) cắt BC tại P. PO cắt AB và AC lần lượt tại M và N. Chứng minh OM=ON
cho tam giác abc nột tiếp (o) ab<ac tia phân giác bac cắt bc tại d và cắt (o) tại m a) chứng minh om vg góc bc. b) tiếp tuyến tại a cắt bc tại s chứng minh tam giác sad cân c) vẽ đường kính mn của (o) cắt ac tại fbvaf bn cắtbam tại e chứng minh ef song song bc
Cho tam giác ABC nội tiếp (O), tia phân giác góc A cắt BC tại D và cắt đường tròn (O) tại M
a) Chứng minh OM vuông góc với BC
b) Phân giác góc ngoài đỉnh A của tam giác ABC cắt (O) ở N. Chứng minh 3 điểm M,O,N thẳng hàng
c) Gọi K là giao điểm của NA và BC, I là giao điểm của KD. Chứng minh IA là tiếp tuyến của đường tròn (O)
HELP MEE :* Thank u very muchhh =)))
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh:
a/ BC song song với DE
b/ Tam giác AMB đồng dạng tam giác MCE
c/ Tam giác AMC đồng dạng tam giác MDB
d/ Nếu AC=CE thì MA^2 = MD.ME
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng