Cho tam giác ABC nhọn nội tiếp đường tròn (O). Đường cao AH giao đường tròn (O) tại D. Đường kính AE.
a, Chứng minh BEDC là hình thang cân.
b, M là điểm chính giữa cung DE. OM giao BC tại I.
Chứng minh I là trung điểm BC.
c, Cho BC = 24cm, IM = 8cm. Tính R (O)
Cho tam giác ABC nhọn nội tiếp (o). Đường cao AH của tam giác cắt (O) tại D. AO kéo dài cắt O tại E.
a, Chứng minh BDEC là hịnh thang cân
b, Gọi M là điểm chính giữa của cung DE. om giao BE tại I. chứng minh I là trung điểm của BC
c, Tính kính của O, biết BC=24 cm, IM=8cm
Cho đường tròn tâm O đường kính BC và A là điểm chính giữa cung BC. Trên đoạn OA lấy điểm I ( I khác O,A) gọi M là giao điểm của BI với đường tròn. Trên tiếp tuyến của đường tròn tại M lấy điểm E sao cho IE vuông góc với OA.
A. Cm tứ giác OIME nội tiếp.
B. Chứng minh BE đi qua trung điểm OI
C. Gọi H là giao điểm của IE và OM, cmr IB/EH = BM/OA
Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp và K là tâm đường tròn bàng tiếp góc A của tam giác
a, Chứng minh bốn điểm B, C, I, K cùng thuộc đường tròn (O; IO) vói O là trung điểm của đoạn thẳng IK
b, Chứng minh AC là tiếp tuyến của (O)
c, Biết AB = AC = 20 cm và BC = 24 cm tính bán kính của (O)
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
Cho tam giác ABC nhọn nội tiếp (O) . Đường cao AH của tam giác ABC cắt (O) tại D , AO kéo dài cắt (O) tại E
a, Cm tứ giác BDEC là hình thang cân
b, Gọi M là điểm chính giữa của cung DE , OM cắt BC tại I . Cm I là trung điểm của BC
c, Tính bán kính của (O) biết BC =24cm, IM=8cm
cho tam giác abc nhọn. vẽ nửa đường tròn tâm o đường kính bc cắt cạnh ab và ac thứ tự tại m và n. gọi h là giao điểm của bn và cm.
a)cm ah vuông góc với bc
b)chứng minh 4 điểm a,m,h,n cùng thuộc một đường tròn. xác định tâm i của đường tròn đó
c)chứng minh om là tiếp tuyến của đường tròn tâm i
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.