Xét ∆MDB vuông tại M và ∆NDC vuông tại N có:
BD = DC(GT)
^ADB = ^ADC (đối đỉnh)
=> ∆MDB=∆NDC (ch-gn)
=> ^MBD = ^NCD (2 góc tương ứng)
Hay ^OBH = ^ICK
Xét ∆ADH vuông tại H và ∆EDK vuông tại K có:
AD = ED.
^ADH = ^EDK (đối đỉnh)
=>∆ADH=∆EDK (ch-gn)
=> DH = DK (2 cạnh t.ứ)
=> BD - DH = CD - DK.
=> BH = CK.
Tự cm : ∆KIC = ∆HOB (g.c.g)
=> KI = HO (2 cạnh t.ứ)
Tự cm ∆KID = ∆HOD (c.g.c)
=> ^KDI = ^HDO (2 góc t.ứ)
Mà ^KDI + ^IDB = 180°
=> ^BDO+^IDB=^IDO=180°
=> Đpcm