HN

Cho tam giác ABC nhọn nội tiếp (O) . Các đường cao AD, BE , và CF cắt nhau tại H . Đường thẳng EF cắt đường tròn ở I và K a) chứng minh : Tứ giác CDHE  nội tiếp đường trònb) Chứng minh : AH . AD = AF . ABc) Kẻ tiếp tuyến Ax, chứng minh: BCEF nội tiếp. Từ đó chứng minh : Ax // IK

H24
3 tháng 3 2021 lúc 20:02

h vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

 

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
TG
Xem chi tiết
VA
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
TN
Xem chi tiết
VH
Xem chi tiết
TH
Xem chi tiết