Cho tam giác ABC nhọn nội tiếp (O). Các đường cao BD và CE của tam giác cắt nhau tại H.
a) CM: tứ giác BCDE nội tiếp đường tròn tâm O.
b) Kẻ đường kình AK. CM: AB.BC = AK.BD.
c) CM: góc BCD = góc AED
d) Từ O kẻ OM vuông góc BC. CM: H, M, K thẳng hàng.
Cho tam giác ABC nhọn nội tiếp (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đường kính AK của (O). Gọi I là trung điểm BC
a) CMR: B, C, E, F cùng thuộc 1 đường tròn
b) CMR: BHCK là hình bình hành.
BE.BH + CF.CH = 4IE^2
c) Giả sử góc BAC = 60°. CMR: Tam giác OAH cân
*Note: e chx học tứ giác nội tiếp nên ko cm dựa vào tgnt ạ
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Vẽ các đg cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đg kính AM.
a) Cm tứ giác BHCM là hình bình hành
b) Gọi I là giao điểm HM và BC. Cm OI vuông góc BC và AH = 2OI
c) Gọi G là trọng tâm tam giác ABC. Cm O, G, H thẳng hàng.
d) Cm SAGH= 2SAGO
Giúp em với mọi người
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC) Hai đường cao AD, CE cắt nhau tại H
a. Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F, chứng minh tứ giác BEHD nội tiếp và AH. AF= AM.AK
b. Gọi I là trung điểm của BC, EI cắt AK tại N, Chứng minh tứ giác EDNC là hình thang cân
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC)
Hai đường cao AD, CE cắt nhau tại H
a. Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F, chứng minh tứ giác BEHD nội tiếp và AH. AF=AM.AK
b. Gọi I là trung điểm của BD, EI cắt AK tại N, Chứng minh tứ giác EDNC là hình thang cân
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O có hai đường cao là BD và CE giao nhau tại H. Vẽ đường kính AK của đường tròn tâm O.
a) Chứng minh: tứ giác BHCK là hình bình hành
b) OM vuông góc với BC tại M. Chứng minh \(OM=\frac{1}{2}AH\)
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c với ạ !!!
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp được một đường tròn. b) Kẻ đường kính AD của đường tròn (O). Tứ giác BFCD là hình gì? Vì sao? c) Gọi M là trung điểm của BC. Chứng minh AH = 2OM. d) Chứng minh OA | EF
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng