Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

VN

Cho tam giác ABC nhọn, hai đường cao BD và CE cắt nhau tại H. Vẽ hai điểm M và N là hai điểm tương ứng trên các đoạn HB; HC sao cho AMC=ANB=90 độ. CMR: AMN=ANM

AT
20 tháng 6 2021 lúc 17:22

Ta có: \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\left(1\right)\)

 \(\Delta ANB\) vuông tại Ncó \(NE\bot AB\Rightarrow AN^2=AE.AB\left(2\right)\)

Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)

Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)

\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A

\(\Rightarrow\angle AMN=\angle ANM\)

undefined

 

Bình luận (0)

Các câu hỏi tương tự
BN
Xem chi tiết
NC
Xem chi tiết
NA
Xem chi tiết
YL
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
EN
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết