Cho tam giác nhọn ABC, 2 đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy các điểm M và N sao cho \(\widehat{AMC}\) = \(\widehat{ANB}\) = \(90^o\). Chứng minh rằng: AM = AN
Cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Gọi M,N là các điểm thuộc HB, HC sao cho AMC=ANB=90. Chứng mình tam giác AMN cân
1. Cho tam giác ABC vuông tại A. Gọi I là giao điểm các đường phân giác trong của tam giác.
biết IB=\(\sqrt{5}\); IC=\(\sqrt{10}\). Tính BC
2. Cho tam giác ABC nhọn. Hai đường cao BD và CE cắt nhau tại H. Trên hai đoạn HB và HC lần lượt lấy 2 điểm M,N sao cho góc AMC = góc ANB= 90o. Chứng minh tam giác AMN cân.
3. Cho hình vuông ABCD có cạnh AB=1, P và Q lần lượt là các điểm thuộc AB và AD sao cho tam giác APQ có chu vi =2. Chứng minh góc PCQ=45o
cho tam giác ABC nhọn, BD và CE là hai đường cao. Các điểm M, N nằm trên các đường thẳng CE và BD sao cho góc AMB = góc ANC = 90 độ. Chứng minh tam giác AMN cân
tam gác nhọn ABC có hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy các điểm M và N sao cho góc AMC = góc ANB=90 độ
Vẽ hình thế nào vậy mọi người
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ. C/m : AM = AN
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ
C/m : AM = AN
Cho tam giác nhọn ABC , hai đường cao BD và CE cắt nhau tại H . Trên HB và HC lần lượt lấy M và N sao cho Góc AMC = Góc ANB = 90 độ
C/m : AM = AN
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK