Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
d. Phân giác góc ABD cắt CE tại M , cắt AC tại P. Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì ? Vì sao ?
Bài 6. (3 điểm) Cho tam giác ABC vuông tại A có AB=6cm,BC =10cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính độ daif AH, HC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC , AI vuong góc BD . Gọi K là giao điểm của HI và AC. Chứng minh: BI .BD = BH.BC và KI .KH = KD.KC.
Cho góc xOy nhọn trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Từ A kẻ đường thẳng vuông góc với Oy tại C, từ B kẻ đường thằng vuông góc với Ox tại D . AC giao BD tại I. ĐƯờng vuông góc Ox từ A cắt đường thẳng vuông góc Oy kẻ từ B tại M
a, Cm : O, y, M thằng hàng
b, CM : OM vuông góc AB, AB song song CD
Hình khó nha mai mình cần gấp giúp với ai giúp sẽ dc điểm cao nha
cho tam giác ABC nhọn ( AB<AC), ba đường cao Ap, BM, CN của tam giác ABC cắt nhau tại H
a) chứng minh BCMn nội tiếp
b) chứng minh tam giác ANM đồng dạng với tam giác ACB
c) kẻ tiếp tuyến BD với đường tròn đường kính AD ( D là tiếp điểm), kẻ tiếp tuyến BE với đường tròn đường kính CH ( E là tiếp điểm). chứng minh BD=BE
d) Giả sử AB=4cm, AC= 5cm, BC=6cm, tính MN
cho tam giác abc có góc b bằng 120 độ, bc = 12cm, AB=6cm. Đường phân giác của góc B cắt AC tại D.
a) tính đường phân giác BD.
b) M là trung điểm của BC. CHứng minh AM vuông góc với BD
1. Cho tam giác ABC nhọn, H là trực tâm. Trên BH lấy điểm M, trên CH lấy điểm N sao cho AM vuông góc vs CM, AN vuông góc với BN. Chứng minh tam giác AMN cân.
2.Cho tam giác ABC cân, đường cao AH. Kẻ HI,HK lầ lượt vuông góc với AB, AC tại I và K. Biết AB= 6cm, BC=10cm. Tính BI, HK và IK.
cho tam giác abc có góc a bằng 90 độ đường cao ah vẽ đường tròn ( a: ah ) từ b và c kẻ cách tiếp tuyến bd, ce với đường tròn tâm giác (a: ah) ( de là tiếp điểm ) a, cho AB = 6cm , bc = 10cm tính ah , bd b, cm 3 điểm d,a, e thẳng hàng c; cm 4 điểm a, b, d, h cùng nằm trên đường tròn
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.