Ôn tập Hệ thức lượng trong tam giác vuông

PT

Cho Tam giác ABC nhọn đường cao AD (à thuộc BC. Gọi H là điểm thuộc đoạn AD sao cho DA.DH=DB.DC BH cắt CA tại E, CH cắt AB tại F. Chứng minh rằng: 1. Hai tam giác DAB, DCH đồng dạng và H là trực tâm của Tam giác ABC 2. AE.AC=AH.AD=AF.AB 3. AH.AD+BH.BE+CH.CF=AB^2+BC^2+AC^2/2 Giúp mình câu 3 với ạ mình cảm ơn

NT
11 tháng 10 2023 lúc 10:21

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết
QD
Xem chi tiết
N3
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
B1
Xem chi tiết
PT
Xem chi tiết