Cho tam giác ABC có các góc đều nhọn, các đường cao AD, BE, CF cắt nhau tại H. CMR: AH/HD+BH/HE+CH/FH>=6.
Cho tam giác ABC nhọn có: 3 đường cao AD, BE, CF cắt nhau tại H
Chứng minh: \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\) không đổi
Cho tam giác nhọn ABC có đường cao AD, BE và CF cắt nhau tại H
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cjo tam giác nhọn ABC có đường cao AH, BE và CF cắt nhau tại H.
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\) VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H.
a. Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)
b. Cm: BH*BE+CH*CF=BC^2
c. Cm: H cách đều 3 cạnh của tam giác DEF.
Giúp câu c là đc
Cho tam giác ABC có AD, BE,CF là các đường cao đồng quy tại H.Chứng minh rằng:
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=2\)
Cho tam giác ABC nhọn các đường cao AD , BE ,CF trực tâm H . Gọi M là trung điểm cùa BC , K là điểm đối xứng với H qua M .a) CM : H đối xứng với K qua M b) tính AH/AD + BH/BE +CH/CF
cho tam giác ABC nhọn các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)