Bài 3: Diện tích tam giác

AL

Cho tam giác ABC. Lấy các điểm D, E, F thứ tự thuộc các cạnh
AB, BC, CA sao cho AD=1/3*AB, BE=1/3*BC, CF=1/3*CA. Các đoạn thẳng AE, BF, CD cắt nhau tạo thành một tam giác. Chứng minh rằng diện tích tam giác này bằng 1/7 diện tích tam giác ABC.

BT
8 tháng 1 2020 lúc 0:16

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo định lý Ta - lét :

\(\frac{FK}{FC}=\frac{BF}{BC}=\frac{1}{3}\rightarrow\frac{FK}{AF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ \(E,N,C\) kẻ đường cao tới AB lần lượt \(H,G,I\)

Theo định lý Ta - lét :

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

\(\rightarrow\frac{NG}{CI}=\frac{2}{7}\rightarrow\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

\(\rightarrow\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự : \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7},\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

\(\rightarrow S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
SK
Xem chi tiết
BB
Xem chi tiết
CD
Xem chi tiết
TD
Xem chi tiết
NN
Xem chi tiết
NK
Xem chi tiết
NC
Xem chi tiết
D8
Xem chi tiết