Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

AB

cho tam giac ABC goi M,N lan luot la trung diem cua AC va AB tren tia doi cua tia MB lay diem D . Tren tia doi cua tia NC lay diêm sao cho MD=MB va NE = NC.CMR

a/AD=AE

b/A la trung diem cua ED

AH
27 tháng 11 2017 lúc 13:20

Lời giải:

Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$

Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:

\(\Rightarrow AD=BC(1)\)

Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành

\(\Rightarrow AE=BC(2)\)

a) Từ (1),(2) suy ra \(AD=AE\)

b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng

Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$

Do đó ta có đpcm.

Bình luận (3)

Các câu hỏi tương tự
AB
Xem chi tiết
DD
Xem chi tiết
AB
Xem chi tiết
DD
Xem chi tiết
HL
Xem chi tiết
HK
Xem chi tiết
HL
Xem chi tiết
KS
Xem chi tiết
TO
Xem chi tiết