Ôn tập chương II - Đa giác. Diện tích đa giác

TN

Cho tam giác ABC, gọi M là một điểm nằm bên trong tam giác . các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, CA, AB tại D, E, F. Tìm giá trị nhỏ nhất của biểu thức:

P = \(\sqrt{\dfrac{AM}{MD}}+\sqrt{\dfrac{BM}{ME}}+\sqrt{\dfrac{CM}{MF}}\)

PA
25 tháng 2 2018 lúc 11:00

Ôn tập chương II - Đa giác. Diện tích đa giác

• Đặt \(S_{MBC}=S_1;S_{MAC}=S_2;S_{MAB}=S_3\)

• Dựng \(AH\perp BC\text{ và }MK\perp BC\)

⇒ AH // MK

\(\Rightarrow\dfrac{AD}{MD}=\dfrac{AH}{MK}=\dfrac{\dfrac{1}{2}\times AH\times BC}{\dfrac{1}{2}\times MK\times BC}=\dfrac{S_{ABC}}{S_1}\)

\(\Rightarrow\dfrac{AM}{MD}=\dfrac{AD}{MD}-1=\dfrac{S_{ABC}}{S_1}-1=\dfrac{S_2+S_3}{S_1}\)

\(\Rightarrow\sqrt{\dfrac{AM}{MD}}=\sqrt{\dfrac{S_2+S_3}{S_1}}\)

• Tương tự, ta cũng có: \(\sqrt{\dfrac{BM}{ME}}=\sqrt{\dfrac{S_1+S_3}{S_2}};\sqrt{\dfrac{CM}{MF}}=\sqrt{\dfrac{S_1+S_2}{S_3}}\)

• Áp dụng bất đẳng thức AM - GM, ta có:

\(P=\sqrt{\dfrac{S_2+S_3}{S_1}}+\sqrt{\dfrac{S_1+S_3}{S_2}}+\sqrt{\dfrac{S_2+S_1}{S_3}}\)

\(\ge3\sqrt[6]{\dfrac{S_2+S_3}{S_1}\times\dfrac{S_1+S_3}{S_2}\times\dfrac{S_2+S_1}{S_3}}\)

\(\ge3\sqrt[6]{\dfrac{2\sqrt{S_2S_3}}{S_1}\times\dfrac{2\sqrt{S_1S_3}}{S_2}\times\dfrac{2\sqrt{S_2S_1}}{S_3}}=3\sqrt{2}\)

• Dấu "=" xảy ra khi \(S_1=S_2=S_3\)

⇔ M là trọng tâm của ΔABC.

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
NT
Xem chi tiết
MH
Xem chi tiết
MS
Xem chi tiết