Ôn tập chương II - Đa giác. Diện tích đa giác

H24

Cho các điểm D,E,F lần lượt nằm trên các cạnh BC,CA,AB của tam giác ABC sao cho \(\frac{DB}{DC}\)=\(\frac{EC}{EA}\)=\(\frac{FA}{FB}\).Gọi M,P lần lượt là trung điểm của BC,DF và kẻ FN // AC với N thuộc BC

a,CM M là trung điểm DN

b,CM MP // và bằng 1 nửa AE

c,Tam giác ABC và DEF có cùng trọng tâm

AH
15 tháng 2 2021 lúc 22:44

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

Bình luận (0)
AH
15 tháng 2 2021 lúc 22:48

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
K7
Xem chi tiết
LR
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
MV
Xem chi tiết