Cho điểm M nằm trong tam giác ABC. 1) So sánh AB với MA + MB . 2) CMR: AB + AC + BC < 2(MA + MB + MC) . 3) Chứng minh rằng MA + MB +MC lớn hơn nửa chu vi tam giác ABC.
Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.
a) So sánh MB + MC với BC
b) Chứng minh M A + M B + M C > A B + B C + C A 2
cho tam giác ABC điểm M nằm trong Δ đó . c/m a, AB + BC + CA < 2 { MA + MB + MC } B,2 { MA + MB + MC }< 2 { AB + BC + CA }
Cho tam giác ABC nhọn , AC < AB < BC . M là trung điểm nằm trong tam giác . Chứng minh MA + MB + MC < AC + BC
cho tam giác ABC, M là trung điểm nằm trong tam giác ABC. Cm: AB+AC+BC < 2(MA+MB+MC)
Cho M là một điểm nằm trong tam giác ABC. Chứng minh
1/2*(AB+BC+CA) < MA + MB + MC < AB + AC + BC
a) Cho tam giác ABC , M là một điểm bất kì nằm trong tam giác . Chứng minh: 2 ( MA +MB +MC) > AB + AC + BC .
b) Cho tam giác ABC , có AN , BP , CQ là ba trung tuyến . Chứng minh : 4/3 ( AN + BP + CQ) > AB + AC + BC .
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
cho tam giác ABC và điểm M nằm trong tam giác CMR : 1/2 AB+AC+BC<MA+MB+MC<AB+AC+BC