\(a,\) Kẻ đường cao AH
Suy ra AH là đường cao cũng là trung tuyến
Do đó \(BH=HC=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng PTG: \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\dfrac{a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)
Vậy \(S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot\dfrac{a\sqrt{3}}{2}\cdot a=\dfrac{a^2\sqrt{3}}{4}\left(đvdt\right)\)