NH

 Cho tam giác ABC có hai đường cao AD và BE cắt nhau tại H. Tia CH cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC

LN
5 tháng 4 2023 lúc 7:47

xét ΔAKH và Δ AMD, có

\(\widehat{A}=\widehat{A}\\ \widehat{K}=\widehat{M}=90^o\\ \Rightarrow\text{ }\Delta AKH\sim\Delta AMD\left(g-g\right)\)

\(\Leftrightarrow\dfrac{AH}{AD}=\dfrac{AK}{AM}\)(1)

xét ΔAKE và Δ AMN, có:

\(\widehat{A}\) chung

\(\widehat{E}=\widehat{N}\) đồng vị

\(\Rightarrow\text{ }\Delta AKE\sim\Delta AMN\left(g-g\right)\)

\(\Leftrightarrow\dfrac{AE}{AN}=\dfrac{AK}{AD}\)(2)

xét ΔAHE và Δ ADN, có:

\(\widehat{A}\) chung 

từ (1) và (2) ta suy ra \(\dfrac{AH}{AD}=\dfrac{AE}{AN}\\ \Rightarrow\Delta AHE~\Delta ADN\)

\(\Leftrightarrow\widehat{E}=\widehat{N}=90^o\Rightarrow DN\perp AC\left(đpcm\right)\)

P/S: chúc bạn học tốt nhe, mình vẽ hình xong nhìn muốn nội thương=))

 

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
NL
Xem chi tiết
VV
Xem chi tiết
NL
Xem chi tiết
PR
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết