Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông

MP

Cho tam giác ABC có góc B= 20 độ, góc C= 30 độ, AH là đường cao, BC= 60cm. Tính diện tích tam giác ABC (làm tròn đến chữ số thập phân số hai).bucminh

CP
16 tháng 7 2021 lúc 18:21

A C B H

Ta có: HB + HC = BC
=>HC = 60 - HB (cm)

Xét △AHC vuông tại H có: \(tan\widehat{C}=\dfrac{AH}{HC}\Rightarrow tan30^0=\dfrac{AH}{HC}\Rightarrow HC=\dfrac{AH}{tan30^0}\left(cm\right)\)    (1)

Xét △AHB vuông tại H có: \(tan\widehat{B}=\dfrac{AH}{HB}\Rightarrow tan20^0=\dfrac{AH}{60-HC}\Rightarrow tan20^0\left(60-HC\right)=AH\)   (2)

Thay (1) vào (2) ta được: \(\Rightarrow tan20^0\left(60-\dfrac{AH}{tan30^0}\right)=AH \)

   \(\Rightarrow tan20^0\left(\dfrac{60.tan30^0}{tan30^0}-\dfrac{AH}{tan30^0}\right)=AH\)

   \(\Rightarrow tan20^0\left(\dfrac{60.tan30^0-AH}{tan30^0}\right)=AH\)

   \(\Rightarrow tan20^0\left(60.tan30^0-AH\right)=AH.tan30^0\)

   \(\Rightarrow tan20^0\left(20\sqrt{3}-AH\right)=AH.tan30^0\)

   \(\Rightarrow tan20^0.20\sqrt{3}-AH.tan20^0=AH.tan30^0\)

   \(\Rightarrow tan20^0.20\sqrt{3}=AH.\left(tan30^0+tan20^0\right)\)

   \(\Rightarrow AH=\dfrac{tan20^0.20\sqrt{3}}{tan30^0+tan20^0}\approx13,3943\left(cm\right)\)

Diện tích của △ABC là: \(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{13,3943.60}{2}\approx401,83\left(cm^2\right)\)

   Vậy...........

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
PH
Xem chi tiết
NN
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết