- Xét tam giác ADE có:
Góc A tù (gt) nên góc ADE, góc AED là các góc nhọn.
=>Góc DEC là góc tù.
=>Góc EDC, góc DCE là các góc nhọn.
=>Góc DEC>Góc DCE.
=>DC>DE (quan hệ giữa góc và cạnh đối diện trong tam giác DEC). (1)
- Xét tam giác ADC có:
Góc A là góc tù (gt) nên góc ADC, góc ACD là các góc nhọn.
=> Góc BDC là góc tù.
=>Góc BCD, góc DBC là các góc nhọn.
=> Góc BDC>góc DBC.
=>BC>DC (quan hệ giữa góc và cạnh đối diện trong tam giác BDC) (2)
- Từ (1) và (2) suy ra: BC>DE
Vì góc bac là góc tú nên độ dài ab lớn
Mà d nằm giữa ba và e năm giữa ac nên
De<bc
Ta có: \(\widehat{DEC}\) là góc ngoài của △ ADE
\(\Rightarrow\widehat{DEC}>\widehat{A}\)
Mà \(\widehat{A}\) là góc tù nên \(\widehat{DEC}\) là góc tù
Xét △ DEC có: \(\widehat{DEC}>\widehat{DCE}\Rightarrow CD>DE\) \(\left(1\right)\)
Ta có: \(\widehat{BDC}\) là góc ngoài của △ ADC
⇒ \(\widehat{BDC}>\widehat{A}\)
Mà góc \(\widehat{A}\) là góc tù nên \(\widehat{BDC}\) là góc tù
Xét △ BCD có: \(\widehat{BDC}>\widehat{BCD}\) ⇒ \(BC\) // \(CD\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\): BC > DE