Cho A,B,C là ba góc của một tam giác. Chứng minh rằng:
\(\sin A+\sin B-\frac{\sqrt{2}}{2}\cos C\le\sqrt{2}\)
Câu 6: Cho góc a thỏa cos alpha = 4/5 và 0 < alpha < pi/2 Giá trị cia * sin 2alpha bằng A. - 12/25 B. 24/25 C. - 24/25 D. 12/25
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Cho hình chóp S.ABC có SC vuông góc với (ABC) và tam giác ABC vuông tại B. Biết AB=a, AC=a√3, SC=2a√6. Sin của góc giữa hai mặt phẳng (SAB); (SAC) bằng
Cho hình chóp S.ABC có S C ⊥ A B C và tam giác ABC vuông tại B. Biết AB=a, A C = a 3 , S C = 2 a 6 . Sin của góc giữa hai mặt phẳng (SAB), (SAC) bằng
A. 2 3
B. 3 13
C. 1
D. 5 7
Cho tam giác ABC nhọn biết 3 góc của tam giác lập thành một cấp số cộng ; số đo góc A nhỏ nhất và sin A = 2 2 .Tìm các góc của tam giác?
A. 60º; 75º
B. 75º; 80º
C. 50º; 85º
D. 55º; 80º
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos x + 2 . sin x + 3 2 . cos x - sin x + 4 . Tính M,m
A. 4/11
B. 3/4
C. 1/2
D. 20/11
Tìm giá trị lớn nhất của P:
P=\(2.\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}\)
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
a) \(y=cos^23x+9\)
b) \(y=sin^2x-3\)
c) \(y=sin^25x+12\)