CP

Cho tam giác ABC có góc A bằng 90o, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4cm, HC = 9cm.
a) Tính độ dài DE.
b) Chứng minh AD. AB = AE. AC
c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH.
d) Tính diện tích tứ giác DENM.
tui còn câu d ko làm được thoi ai giúp với

AT
22 tháng 6 2021 lúc 15:52

d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật

\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)

Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)

\(\Rightarrow MDEN\) là hình thang vuông

Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH 

\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)

Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH 

\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)

\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết
DK
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
CH
Xem chi tiết
LH
Xem chi tiết