NL

cho tam giác ABC có góc A= 60. Vẽ tia phân giác BD và CE(D thuộc AC; E thuộc AB)cắt nhau tại O

a) Tính góc BOC.

b) Vẽ phân giác ngoài tại B và C cắt nhau tại I. Tính góc BIC.

TM
30 tháng 11 2016 lúc 20:40

A B 60 C o I O D E x y

a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)

=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)

BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)

=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)

\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)

b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)

Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)

=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)

=>\(\widehat{CBx}+\widehat{BCy}=240^o\)

BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)

CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)

=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)

\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)

=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)

Vậy ............................

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PM
Xem chi tiết
TD
Xem chi tiết
UN
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
HC
Xem chi tiết
KZ
Xem chi tiết
DD
Xem chi tiết