Ôn tập cuối năm môn Hình học

NN

Cho tam giác ABC có độ dài phân giác trong là la, lb, lc. CMR: la ≤ ma và la+lb+lc≤p√3

NL
27 tháng 3 2022 lúc 13:46

Không mất tính tồng quát, giả sử \(AB\le AC\)

Gọi M và D lần lượt là trung điểm và chân đường phân giác trong góc A trên BC

Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\ge\dfrac{BD}{AC}\Rightarrow CD\ge BD\)

\(\Rightarrow BD\le BC-BD\Rightarrow BD\le\dfrac{1}{2}BC\)

\(\Rightarrow BD\le BM\)

\(\Rightarrow AD\le AM\) hay \(l_a\le m_a\)(đpcm)

Đặt \(A=l_a+l_b+l_c=\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\)

\(\Rightarrow A^2=\left(\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\right)^2\)

\(\Rightarrow A^2\le\left[\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\right]\left(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}\right)\)

Áp dụng BĐT cơ bản \(\left(x+y\right)\ge4xy\) ta có:

\(\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\le\dfrac{4b^2c^2}{4bc}+\dfrac{4c^2a^2}{4ca}+\dfrac{4a^2b^2}{4ab}\)

\(=ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)

Đồng thời:

\(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}=\dfrac{3+cosA+cosB+cosC}{2}\le\dfrac{3+\dfrac{3}{2}}{2}=\dfrac{9}{4}\)

\(\Rightarrow A^2\le\dfrac{9}{4}.\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow A\le\sqrt{3}\left(\dfrac{a+b+c}{2}\right)=p\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi tam giác ABC đều

Bình luận (1)

Các câu hỏi tương tự
NS
Xem chi tiết
MU
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết