Cho tam giác ABC có các cạnh a=BC; b=AC; c=AB. CMR:
a) \(a\widehat{A}+b\widehat{B}\ge a\widehat{B}+b\widehat{A}\)
b) \(a\widehat{A}+b\widehat{B}+c\widehat{C}\ge60^0\left(a+b+c\right)\)
c) \(a\left(\widehat{A}-60^0\right)+b\left(\widehat{B}-60^0\right)+c\left(\widehat{C}-60^0\right)\ge0\)
d) \(\frac{a\widehat{A}+b\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{b\widehat{B}+c\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{c\widehat{C}+a\widehat{A}}{\widehat{C}+\widehat{A}}\ge a+b+c\)
e) \(\frac{\left(a-b\right)\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{\left(b-c\right)\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{\left(c-a\right)\widehat{A}}{\widehat{C}+\widehat{A}}\le0\)
f) \(\frac{a\widehat{A}+b\widehat{B}+c\widehat{C}}{a+b+c}< 90^0\)