Violympic toán 9

HT

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.

Chứng minh rằng: Tứ giác CEHD, nội tiếp . Bốn điểm B,C,E,F cùng nằm trên một đường tròn. AE.AC = AH.AD; AD.BC = BE.AC. H và M đối xứng nhau qua BC. Xác định tâm đường tròn nội tiếp tam giác DEF.

Giúp mk nha , mk cần gấp lắm

TP
23 tháng 2 2019 lúc 21:23

1. Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

Bình luận (0)
TP
23 tháng 2 2019 lúc 21:24

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

Bình luận (0)
NT
24 tháng 2 2019 lúc 6:05

Hình vẽ:

Hỏi đáp Toán

Bình luận (0)
NT
24 tháng 2 2019 lúc 6:06

Bài giải:

Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
PN
Xem chi tiết
KD
Xem chi tiết
TK
Xem chi tiết
HB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết