Ôn tập Hệ thức lượng trong tam giác vuông

DH

cho tam giác ABC có ba góc nhọn, kẻ đường cao AH a) chứng minh: sinA + cosA >1 b) chứng minh: BC = AH.(cotgB + cotgC) c) Biết AH =6cm góc B =60 độ góc C = 45 độ . tính diện tích tam giác ABC

SG
17 tháng 10 2019 lúc 18:21

bạn tự vẽ hình nha thông cảm cho mình

a) vẽ đường cao BH (BH⊥AC,H∈AC)

Ta có : \(\sin A+\cos A=\frac{BH}{AB}+\frac{AH}{AB}\)\(\left(\sin A=\frac{BH}{AB},\cos A=\frac{AH}{AB}\right)\)

\(\Leftrightarrow\sin A+\cos A=\frac{BH+AH}{AB}\)

Xét tam giác AHB ta có : \(BH+AH>AB\) (BĐT tam giác)

\(\Leftrightarrow\)\(\frac{BH+AH}{AB}>1\)

\(\Leftrightarrow\sin A+cosA>1\)(đpcm)

b)Ta có :\(\cot B=\frac{BH}{AH},\cot C=\frac{HC}{AH},BH+HC=BC\)

VP:\(AH\cdot\left(\cot B+\cot C\right)\)

\(=AH\cdot\left(\frac{BH}{AH}+\frac{HC}{AH}\right)\)

\(=BH+HC\)

\(=BC\) (đpcm)

c) Ta có:\(\tan B=\frac{AH}{BH}\)

Hay \(\tan\left(60\right)=\frac{6}{BH}\)

\(\Leftrightarrow BH=\frac{6}{\tan\left(60\right)}\)

\(\Leftrightarrow BH=2\sqrt{3}\)

Ta có :\(\tan\left(45\right)=\frac{AH}{HC}\)

Hay \(\tan\left(45\right)=\frac{6}{HC}\)

\(\Leftrightarrow HC=\frac{6}{\tan\left(45\right)}\)

\(\Leftrightarrow HC=6\)

Ta có :BH+HC=BC

Hay \(2\sqrt{3}+6=BC\)

\(\Leftrightarrow2\sqrt{3}+6\approx9.5\)

Ta có: SABC \(=\frac{1}{2}\cdot BC\cdot AH\)

Hay SABC\(=\frac{1}{2}6\cdot9.5\)

\(\Leftrightarrow SABC=28.5\)

Vậy SABC=28.5cm

Bình luận (0)
SG
17 tháng 10 2019 lúc 18:22

mình nhầm \(28.5cm^2\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LR
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết