NP

Cho tam giác ABC có ba góc nhọn, ba đường cao AA', BB', CC' đồng quy tại H.CMR: \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)bằng một hằng số

 

NM
24 tháng 3 2016 lúc 16:10

+ Ta có

\(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

+ Ta có

\(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{HA'.BC}{2}}{\frac{AA'.BC}{2}}=\frac{HA'}{AA'}\)

+Tương tự ta cũng có

\(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\)\(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)

=> \(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\) Là một hằng số

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
TB
Xem chi tiết
MM
Xem chi tiết
HV
Xem chi tiết
BB
Xem chi tiết
CA
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
VD
Xem chi tiết