PB

Cho tam giác ABC có  B A C ⏜ = 60 0 ,   A C = b ,   A B = c   b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.

c)     Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c.

CT
7 tháng 11 2017 lúc 7:06

c)

  K ẻ   B N ⊥ A C N ∈ A C .   B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có  R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
LS
Xem chi tiết
RS
Xem chi tiết
CL
Xem chi tiết
LN
Xem chi tiết
VP
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết