AH

Cho tam giác ABC có AB=6cm,AC-8cm,BC=10cm.Gọi k là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M.Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng

a)Tam giác ABC vuông tại A

b)AB=DC

c)ba đường thẳng AB,MK,CD cùng đi qua một điểm

MH
15 tháng 4 2022 lúc 14:46

a) Ta có \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

\(\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại \(A\)

b) Xét \(\Delta BMK\) và \(\Delta CMK\) có:

\(\widehat{BKM}=\widehat{CKM}=90^0\) (gt)

\(BK=CK\) (gt)

\(KM\) chung

\(\Rightarrow\Delta BKM=\Delta CKM\) (c.g.c) \(\Rightarrow BM=CM\)

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(\widehat{A}=\widehat{D}=90^0\)

\(MB=MC\) (đã chứng minh)

\(\widehat{AMB}=\widehat{DMC}\) (hai góc đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\) (ch-gn) \(\Rightarrow AB=DC\) (hai cạnh tương ứng)

c) Gọi \(AB\cap CD=I\)

Tam giác \(IBC\) có \(\left\{{}\begin{matrix}CA\perp BI\\BD\perp CI\\CA\cap BD=M\end{matrix}\right.\Rightarrow M\) là trực tâm tam giác \(BCI\)

\(\Rightarrow IM\perp BC\) mà \(KM\perp BC\Rightarrow I\in KM\)

Vậy \(AB,CD,KM\) đồng quy tại \(I\)

 

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
HT
Xem chi tiết
MC
Xem chi tiết
LV
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
TA
Xem chi tiết
DH
Xem chi tiết