Cho tam giác ABC vuông tại A có AH là đường cao
a) Biết AC = 16cm; BC = 20cm. Tính CH, AH
b) Kẻ HE vuông góc với AB tại E, kẻ HF vuông góc với AC tại F. Tính góc ABC và góc AFE (Làm tròn đến độ)
c) Kẻ AM là trung tuyến của tam giác ABC, AM cắt EF tại I. Gọi O là giao điểm của AH và EF. Tính diện tích tứ giác OIMH. (Số gần đúng làm tròn đến chữ số thập phân thứ nhất)
Cho hình chữ nhật ABCD có AD=4,9cm. Trên cạnh AD lấy điểm M sao cho AM=1,5cm. Gọi I là giao điểm của BM và AC. Biết góc IDC có số đo bằng 70*.
a) Tính ID (chính xác đến 2 chữ số thập phân)
b) Tính AB (chính xác đến 2 chữ số thập phân)
c) Tính góc BIC (độ, phút, giây)
d) Tính bán kính đường tròn nội tiếp tam giác BIC (chính xác đến 2 chữ số thập phân)
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Cho đường tròn (O; R) có đường kính AB, lấy điểm M thuộc đường tròn (O) sao cho AM<BM. Tiếp tuyến tại A của đường tròn (O) cắt tia OM tại S. Đường cao AH của tam giác SAO (H thuộc SO) cắt đường tròn tại D. Kẻ đường kính DE của đường tròn (O). Gọi r là bán kính đường tròn nội tiếp tam giác SAD. Chứng minh M là tâm đường tròn nội tiếp tam giác SAD và tính chiều dài đoạn thẳng AE theo R, r.
1/Cho tam giác ABC. Đường cao AH, trung tuyến AM. Biết góc BAH = HAM + MAC(góc). Tính các góc của tam giác ABC
2/Cho tam giác ABC vuông tại A. C/m: AB*AC = r*(r+BC) (r là bán kính đường tròn nội tiếp tam giác ABC)
Cho nửa đường tròn (O; R) đường kính AB. Điểm M thuộc nửa đường tròn. Gọi H là điểm chính giữa cung AM. Tia BH cắt AM tại I. Tiếp tuyến của nửa đường tròn tại A cắt BH tại K. Nối AH cắt BM tại E.
1. Chứng minh tam giác BAE là tam giác cân;
2. Chứng minh KH.KB=KE2;
3. Đường tròn tâm B, bán kính BA cắt AM tại N. Chứng minh tứ giác BIEN nội tiếp.
Cho tam giác ABC vuông tại A có đường cao AH và I là trung điểm của BC. Đường tròn tâm O đươngg kính AH cắt AB, AC tại M, N
CM:AB*AM=AC*AN
CM tứ giác BMNC là tứ giác nội tiếp
Gọi D là giao của AI, MN. CM:1/AD=1/BH+1/CH
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm, BC = 25 cm.
a, Tìm độ dài các đoạn thẳng BH, CH, AB và AC
b, Vẽ trung tuyến AM. Tìm số đo của A M H ^
c, Tính diện tích tam giác AHM
Cho đường tròn (O;R) có đường kính AB.vẽ dây AM=R.
a)CM tam giác AMB vuông và tính MB theo R
b)Vẽ đường cao OH của tam giác OMB tiếp tuyến tại điểm M của (O) cắt tỉa OH tại K.CM:KB là tiếp tuyến của (O)
c)CM;tam giác MKB đều và tính diện tích theo R
d)Gọi I là giao điểm của của OK với (O).Chứng minh I là tâm đường tròn nội tiếp tam giác MKB.
Cho tam giác ABC có B A C ^ = 45 0 , các góc B và C đều nhọn. Đường tròn đường kính BC cắt AB và AC lần lượt tai D và E. Gọi H là giao điểm của CD và BE
a, Chứng minh AE = BE
b, Chứng minh tứ giác ADHE nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác này
c, Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
d, Cho BC = 2a. Tính diện tích viên phân cung D E ⏜ của đường tròn (O) theo a