cho tam giác ABC(AC>AB), tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE=AB. Nối D với E.C/m tam giác ABD=AED,AD vuông góc BE,gọi Ax là tia phân giác của góc ngoài ở đỉnh A của tam giác ABC,C/m Ax // BE, tìm điều kiện của tam giác ABC để DE vuông góc với AC
Giúp mik vs mai kt
1.cho tam giác ABC có AB<AC<BC . Tia phân giác của góc A cắt BC tại D , tia phân giác của góc B cắt AC tại E . Hai tia phân giác AD và BE cắt nhau tại I . So sánh BD và CD
2.cho tam giác ABC có AB<AC . Tia phân giác cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF a, C/m ABM là tam giác cân b, C/m MF=BE=CF c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC
Cho tam giác ABC có AB=AC. Vẽ tia phân giác của góc A cắt BC ở D gọi M là 1 điểm nằm giữa A và D. Chứng Minh
a) Tam giác AMB=Tam giác AMC
b)Tam giác MBD=Tam giác MCD
cho tam giác ABC, AB > AC. Từ trung điểm D của BC kẻ đườn vuông góc với tia phân giác của góc A tại H. Đường thẳng cắt AB tại E cắt AC tại F. vẽ BM song song EF (M thuộc AC )
a, tam giác ABM cân
b, MF = BE = CF
c, Qua D vẽ đường thẳng vuông góc BC và cắt tia AH tại I. CMR:IF vuông góc AC.
Cho tam giác ABC có AC > AB . Tia phân giác của góc A cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM .
Cho tam giác ABC có AC > AB . Tia phân giác của góc A cắt BC ở D. Kẻ AH vuông góc BC. Gọi M là trung điểm của BC. Chứng minh rằng tia AD nằm giữa hai tia AH và AM.
Cho tam giác ABC có AC > AB. Tia phân giác của góc A cắt BC ở D. Kẻ AH vuông góc với BC. M là trung điểm của BC. CMR:
Tia AD nằm giữa hai tia AH và AM