PB

Cho tam giác ABC có AB > AC .Trên cạnh AB lấy điểm D sao cho AD = AC đường tròn tâm O ngoại tiếp tam giác BCD .Từ O lần lượt hạ các đường vuông góc OH,OK xuống BC và BD (H ∈ BC , K ∈ BD). Chứng minh rằng OH < OK

CT
12 tháng 11 2018 lúc 18:27

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng bất đẳng thức tam giác vào ΔABC , ta có: BC > AB - AC mà AC = AD (gt)

suy ra : BC > AB – AD hay : BC > BD

Vì trong một đường tròn ,dây cung lớn hơn gần tâm hơn nên: OH < OK

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HB
Xem chi tiết
NQ
Xem chi tiết
MT
Xem chi tiết
BP
Xem chi tiết
NN
Xem chi tiết