NM

Cho tam giác ABC có AB= 5; AC=8, số đo góc A bằng 60o. M,N là 2 điểm xác định bởi 5\(\overrightarrow{AM}\)=\(\overrightarrow{AB}\);4\(\overrightarrow{AN}\)=\(\overrightarrow{AC}\). Chứng minh CM vuông góc BN.

AH
20 tháng 12 2021 lúc 13:06

Lời giải:

$\overrightarrow{CM}.\overrightarrow{BN}=(\overrightarrow{CA}+\overrightarrow{AM})(\overrightarrow{BA}+\overrightarrow{AN})$

$=\overrightarrow{CA}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{AN}+\overrightarrow{AM}.\overrightarrow{BA}+\overrightarrow{AM}.\overrightarrow{AN}$

$=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{CA}.\frac{1}{4}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{AB}.\overrightarrow{BA}+\frac{1}{5}\overrightarrow{AB}.\frac{1}{4}\overrightarrow{AC}$

$=\frac{21}{20}\overrightarrow{AB}.\overrightarrow{AC}-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}\cos A.|\overrightarrow{AB}|.|\overrightarrow{AC}|-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}.\frac{1}{2}.5.8-\frac{1}{4}.8^2-\frac{1}{5}.5^2=0$

$\Rightarrow CM\perp BN$

Bình luận (0)

Các câu hỏi tương tự
KC
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
TM
Xem chi tiết
DB
Xem chi tiết
Xem chi tiết
CH
Xem chi tiết
TD
Xem chi tiết
NM
Xem chi tiết