PB

Cho tam giác ABC có ∠A=90o, kẻ AH vuông góc với BC (H thuộc BC). Các tia phân giác của ∠C và ∠BAH cắt nhau ở I. Chứng minh rằng: ∠(AIC)=90o

CT
23 tháng 8 2017 lúc 11:33

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AH⊥BC (gt) ⇒ ΔAHB vuông tại H

Trong tam giác vuông AHB ta có: ∠BHA = 90o

⇒ ∠B + ∠BAH = 90o (1)

Trong tam giác vuông ABC ta có: ∠BAC = 90o

⇒ ∠B + ∠C = 90o (2)

Từ (1) và (2) suy ra: ∠BAH = ∠C (3)

+) Vì AI là tia phân giác của góc BAC nên:

∠(BAI) = ∠(IAH) = 1/2.∠BAH (4)

Do CI là tia phân giác của góc ACB nên:

∠(ACI) = ∠(ICB) = 1/2.∠C (5)

+) Từ (3); (4) và (5) suy ra:

∠(BAI) = ∠(IAH) = ∠(ACI) = ∠(ICB)

+) Lại có:

∠BAI + ∠IAC = 90º

Suy ra: ∠ICA + ∠IAC = 90º

Trong ΔAIC có: ∠ICA+ ∠IAC = 90º

Vậy: ∠AIC = 90º.

Bình luận (1)

Các câu hỏi tương tự
Xem chi tiết
AM
Xem chi tiết
MC
Xem chi tiết
NT
Xem chi tiết
VL
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
YV
Xem chi tiết
DG
Xem chi tiết