NA

Cho tam giác ABC có A= 90 độ, AC = 5cm, BC = 13cm. Gọi I là trung điểm của cạnh AB, D là điểm đối xứng với C qua I.

a) Tứ giác ADBC là hình gì? Vì sao?

b) Gọi M là trung điểm của cạnh BC. Chứng minh: MI vuông góc với AB. Tính diện tích ΔABC.

H24
5 tháng 2 2022 lúc 15:43

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

Bình luận (1)

Các câu hỏi tương tự
TC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
NN
Xem chi tiết
CD
Xem chi tiết
NM
Xem chi tiết