PB

Cho tam giác ABC có:∠ A =60o

Các tia phân giác của các góc B, C cắt nhau ở I và cắt AC, AB theo thứ tự tại D, E. Chứng minh rằng: ID = IE

 

Hướng dẫn: kẻ tia phân giác góc BIC

CT
19 tháng 11 2018 lúc 7:06

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC, ta có:

∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)

⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o

+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B

Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C

Do đó:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔBIC, ta có:

∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o

Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K

Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o

Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)

⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o

∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)

Xét ΔBIE và ΔBIK, ta có

∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)

BI cạnhchung

∠(I1) = ∠(I2) = 60o

Suy ra: ΔBIE = ΔBIK(g.c.g)

IK = IE (hai cạnh tương ứng) (1)

Xét ΔCIK và ΔCID, ta có

∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).

CI cạnh chung

∠(I3) = ∠(I4) = 60o

Suy ra: ΔCIK = ΔCID(g.c.g)

IK = ID (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: IE = ID

Bình luận (3)

Các câu hỏi tương tự
DQ
Xem chi tiết
LL
Xem chi tiết
SC
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết
KB
Xem chi tiết
NC
Xem chi tiết
TQ
Xem chi tiết
NT
Xem chi tiết