Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC.
a. Chứng minh \(S_{AHG} = 2S_{AGO}\)
b. Chứng minh \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC. Chứng minh SAHG=2.SAGO
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Ba đường cao AD,BE,CF gặp nhau ở H. Kéo dài AO cắt (O) tại M, AD cắt (O) tại K. Chứng minh:
a. MK song song BC
b.DH=DK
c. Gọi I là trung điểm của BC. Chứng minh H,M,I thẳng hàng
d. \(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\ge9\)
cho ABC có 3 góc nhọn nội tiếp đường tròn (O;R) các đường cao AD,BE,CF cắt nhau tại H kéo dài AO cắt đường tròn tại điểm K. chứng minh rằng tứ giác BHCK là hình bình hành.
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Cho tam giác ABC nội tiếp đường tròn O . Ba đường cao AD , BE,,CF cắt nhau tại H . kéo dài AO cắt đường tròn tâm O tại M ,AD cắt đường tròn tâm O tại K . cmr
a) MK//BC
b) DH=DK
c) Gọi I là trung điểm của BC. Cmr H,M,I thẳng hàng
d) AD/HD+BE/HE+CF/HF≥9
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. AO cắt BC tại M. P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Chứng minh:
a/ H là tâm đường tròn nội tiếp tam giác DEF
b/ HE.MQ= HF. MP
c/ \(\dfrac{MB}{MC}.\dfrac{DB}{DC}=\left(\dfrac{AB}{AC}\right)^2\)
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H \(\left(D\in BC,E\in AC,F\in AB\right).\) Gôi I là trung điểm của BC và K là đỉnh thứ tư của hình bình hành BHCK.
1) Chứng minh điểm K nằm trên đường tròn (O) và AH = 2.OI
2) Các tia AD, BE, CF lần lượt cắt đường tròn (O) tại A', B', C'. Chứng minh \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
3) Gọi M là giao điểm của AH và EF, N là giao điểm của AK và BC. Chứng minh MN // HK.
Giúp mk nhé m.n, ai nhanh nhất mk tick!!!