cho tam giác abc có 3 góc nhọn đường cao bd và ce cắt nhau tại h. a,cm tam giác abd đồng dạng tam giác ace . b,ch.ce=ccd.ca . c, kẻ ek vuông góc tại k và di vuông góc ec tại i ,cm ah song song ik
Cho tam giác ABC nhọn(AB<AC), vẽ hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE
b)Chứng minh: góc ADE=góc ABC
c) Gọi K là giao điểm của AH và BC. CHứng minh : BD là tia phân giác của góc EDK
d) Chứng minh: BH.BD vuông góc CH.CE=BC.BC
Cho mình hỏi với:
Cho tam giác ABC nhọn có AB<AC, góc BAC=60 độ. 2 đường cao BD và CE cắt nhau tại H, AH cắt BC tại K.
a; Cm: tam giác ABD đồng dạng tam giác ACE
b, CM: góc ADE đồng dạng góc ABC
c, CM: tam giác BKA đồng dạng tám giác BEC
d, CM: BH x BD + Ch x CE= 4DE2
Cho tam giác ABC có các góc đều nhọn. Các đường cao BD và CE cắt nhau tại H.
a) CM: Tam giác ABD đồng dạng tam giác ACE.
b) CM: HB.HD=HC.HE
c) AH cắt BC tại F. Kẻ FI vuông góc với AC tại I. CM: IF/IC = FA/FC
d) Trên tia đối của tia AF lấy điểm N sao cho AN=AF. Gọi M là trung điểm của IC. CM: NI vuông góc với FM
cho tam giác ABC góc A=90 độ đường cao AH, phân giác BD (D thuộc AC)
a) CM tam giác BAH đồng dạng với tam giác BCA và góc BAH =góc BAC b,gọi I là giao điểm của AH và BD CM: BI.BC=BA.BD
c, kẻ CE vuông góc BD cắt BA tại M .CM: AI song song với MD và BA.BM+CE.CM=BC^2
mn ơi cứu mik với mik
Cho tam giác ABC có 3 góc nhọn, các đường cao BD,CE của tam giác cắt nhau tại H. Chứng minh rằng :
a) Tam giác ABD đồng dạng với tam giác ACE.
b) HE.HC=HD.HB.
c) Kẻ đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tạ K. Gọi M là trung điểm của BC. Chứng minh: Ba điểm H,M,K thẳng hàng.
cho tam giác abc nhọn có 2 đường cao bf, ce cắt nhau tại h. Tia ah cắt bc tại d.
a) cm:tam giác aec đồng dạng tam giác afb.
b) cm: ae*ab=af*ac rồi từ đó suy ra tam giác aef đồng dạng với tam giác acb.
c) cm: tam giác bdh đồng dạng tam giác bfc và bh*bf+ch*ce=bc^2
d) vẽ dm vuông góc ab tại m, dn vuông góc ac tại n.
cm: mn song song ef
cho tam giác ABC nhọn có 2 đường cao BF và CE cắt nhau tại H , AH cắt BC tại D
a, CM: tam giác AEC đồng dạng AFB
b, CM:AE.AB=À.AC
c, CM: tam giác BDH đồng dạng với BFC và BH.BF+CH.CE=BC
d, vẽ DM vuông góc với AB tại M , DN vuông góc với AC tại N CM: MN//EF