Ôn thi vào 10

NR

Cho tam giác ABC có 3 góc nhọn (AB<AC), nội tiếp (O) bán kính R. 2 đường cao BE, CF tam giác ABC cắt nhau tại H.

a, CM OA vuông góc EF.

b, Gọi K là trung điểm BC, OA cắt BC tại I, EF cắt AH tại P. CM tam giác APE đồng dạng tam giác AIB.

c, CM KH//IP.

NT
24 tháng 1 2024 lúc 7:33

a: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)

nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

Ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Gọi giao điểm của AI và (O) là D

Xét (O) có

AO là bán kính

AO cắt (O) tại D

Do đó: AD là đường kính của (O)

Gọi giao điểm của AH với BC là N

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại N

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔANB vuông tại N và ΔACD vuông tại C có

\(\widehat{ABN}=\widehat{ADC}\)

Do đó: ΔANB~ΔACD

=>\(\widehat{BAN}=\widehat{CAD}\)

=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)

=>\(\widehat{PAE}=\widehat{IAB}\)

Xét ΔAPE và ΔAIB có

\(\widehat{PAE}=\widehat{IAB}\)

\(\widehat{AEP}=\widehat{ABI}\)

Do đó: ΔAPE~ΔAIB

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NR
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
TH
Xem chi tiết