Ôn thi vào 10

TH

Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.

Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN

DL
31 tháng 1 2022 lúc 16:58

tính : \(BC=5.AH=\dfrac{12}{5}\)

+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN

Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)

=> OA ⊥ MN

do vậy : KI//OA

+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO

+ dẫn đến tứ giác AOKI là hình bình hành.

Bán kính:

\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)

Bình luận (3)

Các câu hỏi tương tự
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MG
Xem chi tiết
HH
Xem chi tiết
NR
Xem chi tiết
49
Xem chi tiết
L8
Xem chi tiết
HH
Xem chi tiết