Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có 3 đường cao AD,BE,CF cắt nhau tại H.Gọi I là giao điểm của DE và CF
CMR: \(IH.CF=HF.CI\)
Cho tam giác ABC có 3 góc nhọn(AB<AC) 2 đường cao AD và BE cắt nhau tại H a) cm tam giác ADC và Tam giâc BEC suy ra CA. CE=CB. CD b) cm CDE=BAC c) Tia CH cắt AB tại F cắt DE tại I. Cm IH. CF=HF. IC. ###### mn giải giúp em câu 4c ạ #######
cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H
a, Chứng minh: tam giác ABC đồng dạng với tam giác CBF
b, Chứng minh: AH . HD = CH . HF
c, Chứng minh: tam giác BDF đồng dạng với tam giác ABC
d, Gọi K là giao điểm của DE và CF. Chứng minh rằng: HF . CK = HK . CF
cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE cắt nhau tại H. Gọi F là giao điểm của CH và AB.
C/M: HD/AD+HE/BE+HF/CF=1
cho tam giác ABC đường cao AD, BE, CF cắt nhau tại H
a) CM tam giác ABD đồng dạng tam giác CBF
b) CM AH*HD=CH*HF
c)CM tam giác BDF đồng dạng tam giác ABC
d) Gọi K là giao điểm của DE và CF. CM HF*CK=HK*CF
Bài 6: Cho ABC có ba góc nhọn (AB < AC), hai đường cao AD, BE cắt nhau tại H. Chứng minh: ADC BEC, suy ra: CA.CE = CB. CD Chứng minh: Tia CH cắt cạnh AB tại F, cắt DE tại I. Chứng minh: IH. CF = HF. IC. Cho ED = AB, AD = 8cm, BC = 12cm. Tính diện tích CDE.
Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau tại H.
CMR:AD/HD+BE/HE+CF/HF>=9 (không dùng bất đẳng thức)
Cho tam giác ABC nhọn. Các đường cao AD,BE, CF cắt nhau tại H. Chứng minh rằng :
a) BD.DC = DH.HA
b) H là giao điểm 3 đường phân giác của tam giác DEF.
c) HD/AD + HE/BE + HF/CF = 1