H24

Cho tam giác ABC cân tại B. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho BM = BN.
a/ Chứng minh MN song song với AC.
b/ Gọi I là giao điểm của AN và CM. Chứng minh BI vuông góc với MN.

TH
24 tháng 3 2022 lúc 20:55

Hình bạn tự vẽ

a, Nối M với N

Xét △BMN có:

BM=BN(gt)

=>△BMN cân tại B

=>∠BMN=(180- ∠B) / 2 (1)

Mà ∠BAC=(180- ∠B) / 2 (△ABC cân tại B) (2)

Từ (1) và (2) => ∠BMN=∠BAC (3)

Mà ∠BMN đồng vị ∠BAC (4)

Từ (3) và (4) => MN//AC

b, Xét △CMB và △ANB có

\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)

=>△CMB = △ANB (c.g.c)

=> ∠BMC = ∠BNC

=>∠BMN + ∠CMN = ∠BNM + ∠MNA

Mà ∠BMN = ∠BNM (△BMN cân tại B)

=>∠BMN + ∠CMN = ∠BMN + ∠MNA

=> ∠CMN = ∠MNA

=> △IMN cân tại I

=> MI=NI (5)

Mà BM = BN (6)

Từ (5) và (6) => BI là đường trung trực của MN

=> BI ⊥ MN

Có gì không hiểu bạn cứ hỏi mình haha

 

 

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
VQ
Xem chi tiết
TA
Xem chi tiết
TV
Xem chi tiết
PA
Xem chi tiết
QT
Xem chi tiết
VD
Xem chi tiết
TQ
Xem chi tiết
HP
Xem chi tiết