H24

Cho tam giác ABC cân tại A.Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE

a) CMR:tam giác ADE cân

b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE

c)Từ B và C kẻ BH,CK theo thứ tự vuông góc với AD và AE .CMR: BH=CK

d)CMR:HK//BC

e) Cho HB cắt CK ở N.CMR: A,M,N thẳng hàng

HD
28 tháng 3 2020 lúc 19:11

toán lớp 1 mà kinh z ? bọn trẻ lớn nhanh ghê !

A B C E D M H K N

e chịu khó gõ link này lên google nhé!

https://h.vn/hoi-dap/question/170176.html

Bình luận (0)
 Khách vãng lai đã xóa
MN
28 tháng 3 2020 lúc 19:32

cái này là lớp 6 SURI chỉ chọn lớp 1 cho vui thôi

Bình luận (0)
 Khách vãng lai đã xóa
HS
28 tháng 3 2020 lúc 19:54

A A A B B B M M M D D D E E E H H H K K K C C C N N N

a) \(\Delta\)ABC cân ở A nên \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC}=\widehat{ABD}=90^0,\widehat{ACB}=\widehat{ACE}=90^0\)

=> \(\widehat{ABD}=\widehat{ACE}\)

AB = AC(hai cạnh bên của tam giác cân ABC)

BD = CE(gt)

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> \(\widehat{ADB}=\widehat{AEC}\)

=> AD = AE

=> \(\Delta\)ADE cân ở A

b) Ta có BD = CE(gt)

BM = CM(vì M là trung điểm của BC)

=> BD + BM = CE + CM

=> DM = EM

Xét \(\Delta ADM\)và \(\Delta AEM\)có :

AD = AE(cmt)

DM = EM(cmt)

AM chung

=> \(\Delta\)ADM = \(\Delta\)AEM(c.c.c)

=> \(\widehat{DAM}=\widehat{EAM}\)(hai góc tương ứng)

=> AM là tia phân giác của góc DAE

Ta lại có : \(\Delta\)ADM = \(\Delta\)AEM(c.c.c) => \(\widehat{DAM}=\widehat{EAM}\)(cmt)

=> \(\widehat{DAM}+\widehat{EAM}=180^0\)

=> \(\widehat{DAM}=\widehat{EAM}=90^0\)

hay \(AM\perp DE\)

c) \(\Delta\)BHD và \(\Delta\)CKE có :

BD = CE (gt)

\(\widehat{HDB}=\widehat{KEC}\)(chứng minh trên)

=> \(\Delta\)BHD = \(\Delta\)CKE (ch - gn)

=> BH = CK

d) Xét \(\Delta\)AHB và \(\Delta\)AKC có :

AB = AC(gt)

BH = CK(cmt)

=> \(\Delta\)AHB = \(\Delta\)AHC(ch - cgv)

=> AH = AK

Vì AH = AK nên \(\Delta\)AHK cân ở A,do đó \(\widehat{AHK}=\frac{180^0-\widehat{A}}{2}\)(1)

Vì AD = AE nên \(\Delta\)ADE cân ở A,do đó \(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\)

Mà hai góc này ở vị trí đồng vị của hai đường thẳng DE và HK cắt đường thẳng AD,do đó HK //DE hay HK //BC

e) Xét \(\Delta\)AHN và \(\Delta\)AKN có :

AH = AK(gt)

AN chung

=> \(\Delta\)AHN = \(\Delta\)AKN(ch-cgv)

=> \(\widehat{HAN}=\widehat{KAN}\)

=> AN là phân giác \(\widehat{DAN}\)

Mà AM,AN đều là phân giác của \(\widehat{DAN}\)=> A,M,N thẳng hàng

Bình luận (0)
 Khách vãng lai đã xóa
HD
30 tháng 3 2020 lúc 20:09

Sasuke -.-

mình hiểu ý của bạn nhưng khúc chứng minh  ^ABD=^ACE thì bạn sai quá sai rồi!

sửa lại phần chứng minh  ^ABD=^ACE

có ^ABD+^ABC=180o(kề bù)

    ^ACE+^ACB=180o(kề bù)

=> ^ABD+^ABC= ^ACE+^ACB

mà ^ABC=^ACB ( tam giác ABC CÂN TẠI A)

=> ^ABD=^ACE

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TM
Xem chi tiết
MT
Xem chi tiết
0H
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết