LL

Cho tam giác ABC cân tại A,các đường phân giác BE,CF

a,cmBFEC là hình thang cân 

b,cmBF=FE=EC

 

a)Ta có: BE, CF là pgiac(gt)

=> ∠CBE=∠FEB\(=\dfrac{1}{2}\widehat{ABC}\)

     \(\widehat{BCF}=\widehat{ECF}=\dfrac{1}{2}\widehat{ABC}\)

Mà ∠ABC=∠ACB(tam giác ABC cân tại A); ∠BCF=∠CBE(cmt)

Ta có: xét tam giác BFC và tam giác CEB có:

+∠FBC=∠ECB (tam cân)

+BC chung

+∠BCF=∠CBE(cmt)

=> tam giác BFC=tam giác CEB (g.c.g)

=>BF=CE(2 cạnh tương ứng)

Mà AB=AC(gt)

=>AB-BC=AC-CE

=>AF=AE

=>tam giác AFE cân tại A

=> \(\widehat{AFE}=\dfrac{1}{2}\left(180^o-\widehat{A}\right)\)

Mà ∠ABC=1/2(180-A)

=>∠AFE=∠ABC

Mà 2 góc ở vị trí đồng vị

=>EF//BC

=>BFEC là hình thang 

Mà ∠CBF=BCE(tam giác cân)

=>BFEC là hình thang cân)

b) Do BFEC là hình thang cân

=>FE//BC; BF=CE(1)

=>góc FEB= góc EBC

Mà BE là pgiac góc B

=>góc FBE=FEB

=> tam giác FBE cân

=>BF=FE (2)

Từ(1);(2)=>BF=FE=EC

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NJ
Xem chi tiết
LT
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
EN
Xem chi tiết
CM
Xem chi tiết