Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O bán kính R tiếp xúc với AB,AC tại B,C.Đường thẳng qua điểm m trên BC vuông góc OM cắt tia AB,AC tại D,E
a) CM: 4 điểm O,B,D,M cùng thuộc 1 đường tròn
b) CM: MD=ME
Giup mình với,mình đang rất cần gấp!!!
tam giác ABC cân tại A vẽ đường tròn tâm O bán kính R tiếp xúc AB ,AC tại B , C . đườg thẳng qua điểm M trên BC vg góc vs OM cắt tia AB AC tại D,E
a, CM 4 điểm O,B,D,M thuộc1 đg tròn
b, CM MD=ME
tam giác ABC cân tại A vẽ đường tròn (O;R) tiếp xúc AB ,AC tại B , C . Đường thẳng qua điểm M trên BC vuông góc với OM cắt tia AB, AC tại D,E
a, CM 4 điểm O,B,D,M thuộc1 đg tròn
b, CM MD=ME
HELP
Cho tam giác ABC cân tại A. Gọi D, E lần lượt lầ trung điểm của AB, AC. M là điểm chuyển động trên đường thẳng DE. Đường tròn tâm O tiếp xúc với AB, AC theo thứ tự tại B,C.Đường tròn đương kính OM cắt đường tròn tâm O tại N,K. Xác định vị trí của điểm M để bán kính đường tròn ngoại tiếp tam giác ANK nhỏ nhất.
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đưong tròn tâm O có bán kính R, đường kính AB. Qua điểm A kẻ đường thẳng d vuông góc AB tại A. Trên d lấy điểm C sao cho AC >R. Lấy điểm M thuộc dưong tròn (O) sao cho OM vuông góc với CM tại M. a) Chứng minh 4 điểm A, C, O, M thuộc cùng một đường tròn. b) Gọi K là giao điểm thứ 2 của BC với đường tròn (O). Chứng minh: BC BK = 4R mũ 2 c) Chứng minh: MB // OC d) Chứng minh: góc CMK = gócMBC
GIÚP MIK VỚI Ạ
Cho đường tròn (O;R), đường kính AC, trên bán kính OA lấy điểm B tùy ý (B khác O và A). Vẽ đường tròn tâm N đường kính AB. Gọi M là trung điểm của BC. Qua M vẽ dây DE vuông góc với BC, AD cắt (N) tại I.
a. CM tứ giác BMDI nội tiếp
b. 3 điểm I, B, E thẳng hàng
c. MI là tiếp tuyến của (N)
d. đường tròn tâm D bán kính DM cắt (O) tại P và Q. CM PQ qua trung điểm của MD.
Giúp tớ câu d với
Cho đường tròn tâm O bán kính R , đường kính AB , lấy C thuộc đường đường tròn bất kì . Kẻ tiếp tuyến tại A của đường tròn . Tiếp tuyến này cắt tia BC tại D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E
â) CM: 4 điểm A,E, C, Ở cùng thuộc 1 đường tròn
b) CM = BC. BD = 4R2 va OE // BD
c) Đường thẳng kẻ qua O và vuông góc BC tại N cắt tia EC ở F. CM: BF là tiếp tuyến của đường tròn
đ) Gọi H là hình chiếu của C trên AB , AC cắt OE tại M . CM: Khi C di động trên đường tròn tâm O và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua 1 điểm cố định