Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
gửi tới mọi người 2 câu hình cực khó:
Bài 4: Cho tam giác ABC có BAC=90, AB < AC và nội tiếp đường tròn tâm O. Trung tuyến AM của tam giác ABC cắt (O) tại điểm thứ hai D. Tiếp tuyến của (O) tại D cắt đường thẳng BC tại S. Trên cung nhỏ DC của (O) lấy điểm E, đường thẳng SE cắt (O) tại điểm thứ hai là F. Gọi P, Q lần lượt là giao điểm của các đường thẳng AE, AF với BC
a) Chứng minh rằng MODS là tứ giác nội tiếp
b) Chứng minh rằng QB = PC
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với cạnh AC tại D. Gọi M là trung điểm của AC, đường thẳng IM cắt AB tại N. Chứng minh rằng tứ giác IBND là hình bình hành
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Bài 1:
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:
a) Góc AHN = ACB
b) Tứ giác BMNC nội tiếp.
c) Điểm I là trực tâm tam giác APQ.
Bài 2:
Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK
Cho điểm D thuộc nửa đường tròn (O:R) đường kính AB ( D không trùng với A,B). Lấy điểm C bất kì thuộc đoạn AO. Đường thẳng vuông góc với CD tại D cắt hai tiếp tuyến tại A và B của nửa đường tròn (O) lần lượt tại M và N.
1.Chứng minh tứ giác ACDM nội tiếp
2.chứng minh tam giác MCN vuông
3. Gọi I là giao điểm của AD và CM, K là giao điểm vủa BD và CN; J là giao điểm của IK và OD.Chứng minh rằng H là trung điểm của IK
cho tam giác nhọn ABC ( AB< AC) nội tiếp đường tròn (O) và có trực tâm H. Ba điểm D,E,F lần lượt là chân các đường cao vẽ từ A,B,C của tam giác ABC. Gọi M là trung điểm của cạnh BC, K là giao điểm của EF và BC. Đường thẳng AK cắt đường tròn tại N
a> Chứng minh tứ giác BFNK nội tiếp đường tròn và HK vuông góc với AM
b> Lấy điểm L trên cung nhỏ BC của đường tròn (O) ( L khác B,L khác C). Goik P là giao điểm của AL và BE, Q là giao điểm của BL và AD. Chứng Minh đường thẳng DE cách đều điểm P và Q