TT

Cho tam giác ABC cân tại A .Trên tia đối của các tia BC và CB thứ tự lấy các điểm D và E sao cho BD=CE 1) Chứng minh tam giác ADE là tam giác cân 2)Gọi M là trung điểm của BC . Chứng minh AM là tia phân giác của góc DAE 3) Từ B và C kẻ BH và CK thứ tự vuông góc với AD và AE. Chứng minh BH=CK cùng đi qua một điểm

H24
7 tháng 1 2022 lúc 10:33

A, xét tam giác ABD và tam giác ACE có

AB = AC ( tam giác ABC cân tại A)

MK Góc ABD + ABC = 180 độ

  lại có góc ACE + ACB = 180 độ

mà góc ABC = ACB(tam giác ABC cân tại A)

=> Góc ABD =ACE

BD = CE ( GT )

nên tam giác ABD = tam giác ACE (C-G-C)

=> góc ADB = góc AEC 

=> tam giác AED cân tại A

b,xét tam giác DAM và tam giác EAM có

AD = AE ( cm a, )

AM cạnh cung

mk có MB=MC(M TĐ BC) (1)

ta lại có BD = CE ( GT) (2)

từ (1) và (2) ta có

DB+BM =CE + MC

hay DM = ME

nên tam giác DAM = tam giác EAM ( C-C-C )

=> góc MAD = MAE 

=>AM ph/G góc DAE

c, xét tam giác BAH và tam giác CAK có

góc BHA=CKA ( = 1 vuông )

AC =AB   ( tam giác ABC cân tại A)

góc BAH = CAK ( tam giác ABD = tam giác ACE)

nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )

=> BH = CK

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
PK
Xem chi tiết
MT
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
TB
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết