BA

Cho tam giác ABC cân tại A. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc AB(E thuộc AB),kẻ DF vuông góc AC(F thuộc AC) chứng minh rằng:
a. DE=DF
b. tam giác BDE=tam giác CDF
c. AD là đường trung trực của BC

NU
28 tháng 2 2019 lúc 18:18

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

Bình luận (2)

Các câu hỏi tương tự
DN
Xem chi tiết
TL
Xem chi tiết
QB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết